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SUMMARY

This paper describes finite difference techniques used to calculate the capacitance of a ring capacitor. The determination
of capacitancesinvolves the solution of a Dirichlet boundary value problem and the calculation of the gradient of the
solution obtained. Circular cylindrical coordinates are used. Nine point difference approximations are used for the
Laplacian and the first derivatives of a function. If this function satisfies Laplace’s equation and is sufficiently differenti-
able, the discretization error of each approximation is O(h*) where h is the maximum mesh size.

1. Introduction

A nine point finite difference approximation to the Laplacian in rectangular coordinates in 2
dimensions is given by [1]

Lyu=alu(x+h, y+k)+u(x+h y—k)+u(x—h, y+k)+u(x—h, y—k)]

" +b[u(x+h, y)+u(x—h, y)]+clu(x, y+k)+u(x, y—k)] —du(x, y) (1)
wi

a= (H +K2)/(12h2K?),

b= (5k? — h2)/(6h2K2) ,

¢ = (Sh* —k2)/(6h*k?),
and

d = 5(h% + K2)/(3h2K?).

If u(x, y) satisfies Laplace’s equation and u(x, y)e C® in a neighborhood of the point (x, y),
then

Lyu= 4u+0 [max (h*, k*)] . ()

If h=Fk and if u(x, y)e C® in a neighborhood of the point (x, y), we have L,u = Au+ O (h°).

In this paper, I give a nine point difference approximation to the Laplacian in cylindrical
coordinates valid for axially symmetric functions and apply it to the calculation of the capa-
citance of ring capacitors described in [2]. The derivatives of the potential function are used
to calculate the capacitance and are also approximated by nine point differences.

2. Difference approximations for regular points
In circular cylindrical coordinates (r, ¢, z), the Laplacian of an axially symmetric function u(r,
z) is given by

Au = 3*u/(0r)* + &*u/(0z)*+ (1/r) Ou/or . (3)

The derivation of difference approximations is similar to that given in [3, p. 337]. It is given
in detail in [8]. A rectangular mesh is used with mesh lengths h and k in the r and z directions,
respectively. A condition which is usually imposed on a difference equation such as eqn. (1)
is that the coefficients a, b and ¢ be positive, i.e., the matrix is of ““positive type”. This restricts
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the values h and k. In the remainder of this paper I will assume that k=0 (h) and hence O[max
(h*, k*)] =0 (h*).
The operators 4, and A, are defined as
Au=h"2[(r+h/2)u(r+h, z)+(r—h2)u(r—h, z) = 2ru(r, z)] ,
n
and Ayu=k™2[u(r, z+k)+u(r,z—k)—2u(r, z)] .
If u(r, z)e C° then, by Taylor series expansion in powers of & and k, it follows that
A utrd,u+ [(W+K)/12]4, 4,u = rAu+ (h2/12)[r(4u),],
+ (k2/12) r(du),, + (W*/12) (u,/r), + O (h*) . {4)
Substitution in {4) of the difference approximation
(/1) =R~ [(r+h/2) "  u(r+h, 2)+ (r—h/2) " u(r—h, z)
—2r(r+h2)" Y r—h/2) ' u(r, z) | + O(H?),
gives an approximation L, to the operator rAu which is defined by the following equation:
Lyu= —agu(r, z)+ ayu(r+h, z) +a,[u(r+h, z+k)+u(r+h, z—k)]
+ay[ulr, z+ k) +ulr,z— k)] +a,[u(r—h, z+ k) +u(r—h, z—k)]
+asu(r—h, 2) (%)
with
a, = (r+h/2)[ (5k*—h2)/(6h*k*) ] —1/[12(r + h/2) ],
a, = (r+h/2)[(W* +k?)/(12h*k*)] ,
ay = r[(Sh*—k?)/(6h*k?)], (6)
as = (r—h/2)[(h* +K*)/(127k?)] ,
as = (r—h/2)[(5k*—h?)/(6h*k*)] —1/[12(r—h/2)] ,
and ag = r[5(h*+k?)/(3h*k?) ] —r/[6(r+ h/2){r—h/2)] .
If u(r, z)e C® in a neighborhood of the point (r, z), then
Lyu = rdu+ (h*/12)[r(4u),), + (k*/12)r (du),,+ O (h*) .
In a similar manner, the following approximations for u, and u, are obtained :
u, = [W(12k*)][u(r+h, z+ k) +u(r+h, z—k)~u(r—h, z+k)—u(r—h, z—k)]
+{[1/(2h)]—[/(6k*) ]} [u(r+h, z) —u(r—h, z)]
+[(r+h2) " ulr+h, 2)+ (r—h/2) tu(r—h, z)
=2r(r+h/2)" (r—h/2)" ulr, 2)]/6 — (K*/6)(4u),+ O(h*), (7
and
u, = (r+h2)[k/(12rh*) ] [u(r+ h, z+ k) —u(r+ h, z—k)]
+{[1/(2k)] —[k/(6h*)]} [u(r, z+ k) —u(r, z— k)]
+(r—h2)[k/(12rh*) ] [u(r—h, z+ k) —u(r—h, z—k)]
— (K/6)(dw),+ 0 (). ®)

3. Difference approximations for irregular points

For points close to the boundary of the bounded region R where we are attempting to solve the
differential equation, it may not be possible to use an approximation of the form (5).

Following [3, p. 338], each derivative of the differential equation can be approximated by a
four point unbalanced difference, i.e., for 0< A< 1,0<u< 1 and ue C*,
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A1 22— 14)
— 2 4
U,=h [i+2u(r+2h, z) + ] u(r+h, z)
6

r—Aih, z) — 3

—/ u(r, z)—‘ + 0(h?),

* Taanuen )

) p—1 2(2‘11)
u,=k [u_kzu(r,z—ﬂk)+——-~~‘u+1 u(r, z+k)

6 3—u 2
+ mu(r,z——uk) - u(r, Z):l + 0(k%),
u, =h"! [iil u(r+h,z) — I(-l—l;l—)u(r—ih, z) — i—zlu(r, z)—’ + 0(h?). 9)

A more accurate approximation can sometimes be obtained in the form:
Lyu= —agu(r, z)+a,u(r+d, h, )+ au(r+d,h, z+d, k) + azu(r, z+dsk)
+agu(r—dsh, z+d, k) +asu(r—dsh, z)+agu(r—dgh, z—dgk)
+aju(r, z—d,ky+agu(r+dgh, z—dgk)
= Au+ ¢y (Au), + ¢, (du), + c3(4u),, + c4(Au),, + cs(4u),, + O (h%)
0<di<1, i=1,2,..,8. (10)

In order that the discretization error in the solution of the difference equation be O (h*)
when the difference approximation (5) is used at interior points of R, it is sufficient [3] that
u(r, z)e C® in D, the coefficients a; of (6) are positive and the approximation L, used at points
close to the boundary has strict diagonal dominance and satisfies

Lhu/ao = Au/a0+0(h4) .

Let C* denote the set of mesh points on the boundary of R and let P; denote the mesh point
corresponding to g; in (10). The requirement of strict diagonal dominance is equivalent to the
existence of a positive number ¢ < 1, independent of h and k, such that

¥ lal <3la . (11)

PigC*

Equating coefficients of derivatives of u of orders up to and including order 4 in (10), we get
a system of 15 equations in 14 unknowns ay, 4y, ..., dg, ¢;, C; ..., Cs Which is overdetermined.
For h=k the coefficients of u,s, and u,,s are the same. If ue C* and u satisfies (3) and if a;,
i=0,1,...,8, ¢, i=1,2, ..., S is a solution of (10) except for the coefficients of u,,s and with
a;/ay =0 for all i, then

Lyu/ag = hk(k®>—h*)(d3a, —dias+déas—d} ag),;3/(6a0)+ 0 (h°)
and
|Lyu/ o] < WK | K2 —h?| 516+ O (%) = O (A

If h=k, then L,u/ay = 0(h%).

If we equate coefficients of derivatives of u of orders up to and including order 3 in (10),
we get a system of 10 equations in 14 unknowns. If we solve the system for ag, a4, ..., ag, ¢4
and ¢, with a;=0 for some i and ¢3=c,=c5=0, and if a;/a, = 0 for all i, then L, u/a, = O(h*).

The method being used to derive a difference equation for irregular points is:

(i) Determine values of ay, a4, ..., ag, ¢4, €4, ..., Cs such that coefficients of derivatives of u
of orders up to and including order 4 in (10) are equal except for the coefficients of u,,s. If
a;/ay 20 for all i and Eq. (11) is satisfied with 6=24/25, then these values define a difference
equation. If a;/a, < 0 for some i or Eq. (11} is not satisfied, then:
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(ii) Determine values of ay, ay, ..., ag, ¢4, €y, ..., C5 such that coefficients of derivatives of u
of orders up to and including order 3 in (10) are equal, a;= 0 for some i=iy and c;=¢,=c¢5=0.
The index i, is chosen by checking the signs of the values a;/a, of the solution obtained in (i).
If j is the first index for which a;/a, <0, thenseti,=j+1ifa;, ,/ao<0andseti,=jifa;, /a0 20.
If a;/a, =0 for all i and Eq. (11) is satisfied with 6 =24/25, then these values define a difference
equation. If a;/a, < O for some i or Eq. (11) is not satisfied, then:

(iii) Use (9) to derive a difference equation.

4. Solution of the difference equations

Iterative methods used to solve the difference equations are discussed in [1] and [5]. When
reducing the equation L,u=0to matrix form it is assumed that the natural ordering of the mesh
points is used. In matrix form the difference equation L,u=0 reduces to

Au=b

where A is a square non-singular matrix. In a rectangular region with no irregular points the
equation L,u=0 produces a symmetric matrix A.

Let
A=B+D,
B=L+U,
where
’ l”:O for ]gl,
Uij =0 for ]él,
and

d;#0, d;=0 for i#j.
The successive iterates ™ of the successive overrelaxation method (SOR) are defined as

u"t V=& u”+(I-wL) *wc

with
Z,=(I—oLl) '[oU+(1—w)I]

and
c=D""b.

The successive iterates u™ of symmetric successive overrelaxation (SSOR) are given by
u"t =7 u"+wR—w)(I-oU) '(I—wL) ¢

with
To=UoT o

where
Uy,=(I—U) ' [oL+(1-w)I].

If 4 is symmetric with positive diagonal elements and w is real, the eigenvalues of 7, are real
and non-negative. The successive iterates v for the SSOR method with semi-iteration (SSOR-
SI) are given by [5, p. 471]

o0 = gy (1= 12 [(T= 28+ K]+ (1= pys ) D
where

pr=1, p,=22%/(22*~1),

Pr1=[1=p/(42%)]71, n=2,3,...,

z=(2/1)-1,

the eigenvalues A of 7, are contained in the interval

0<A<T=5(7,)
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and
k=wR-w)(I-oU) '(I-oL) 'c.

If A is a positive definite matrix and if =S (D~ ' B) then, according to [ 5, p. 464], if

oy =2/{1+[2(1 -]} (12)
then
A= 8(7,) < {1-[(1—=p)/23}/ {1+ [(1 - p)/2]%} . (13)

As the radial coordinate becomes infinite, the difference approximation (5) approaches the
difference approximation (1). It has been found that the optimum iteration parameters for
each of the methods SOR and SSOR do not significantly depend on the radius but only on the
boundary of the region, e.g., in Figure 1 the optimum iteration parameters are, for practical
purposes, independent of a. For a square region 0< x< 1, 0< y< 1, with a square mesh the
optimal relaxation factor for SOR for the difference equation (1) is given by [1]

w=2-2116(nh)+ 2.24(nh)*+ O (h*), (14)
and for this relaxation factor, the spectral radius of the matrix .Z,, is given by

S(&,)=1—1.791(nh)+1.60(nh)* + O (h?). (15)
The spectral radius u of the Jacobi matrix D~ ' B for the same region is given by [1]

p=02[cos*(nh)+4 cos(nh)] . (16)

This can be used with (12) and (13) to obtain a reasonably efficient estimate for the parameters
needed for the SSOR-SI method.

TABLE 1

Solution of the difference equations in a square region. The number of iterations given is for a— 0.

h 3 5 iz

No. of SOR iterations 54 92 183

No. of SSOR-ST iterations

with wy, 4o 21 30 43

No. of SSOR-SI iterations

with w,, 1, 26 37 52

Error in test problem.

a=10'® 207 %1077 328 x 1077 5.13x 10711

Error in test problem.
a=% 1.93x107°¢ 1.31x 1077 839x107°

Table 1 gives a comparison of SOR and SSOR-SI for the solution of the Dirichlet problem
on the unit square with a square mesh (h=k). The optimum relaxation factor @ for SOR was
obtained from (14). The optimum SSOR-SI parameters, w, and 4,, were obtained by numerical
experiments. w, minimizes S( 7,,) for the difference equation (1)and 1,=S(7,,,). The SSOR-SI
parameters, w; and 1,, were obtained from (12), (13) and (16). The table gives the number of
iterations required to reduce the maximum residual of the difference equation to 107 1%
when the value of the solution on the boundary of the unit square is zero and the initial approxi-
mation at each mesh point in the interior of the unit square is unity. Each SSOR-SI iteration
requires approximately three times as many arithmetic operations as does an SOR iteration.
A testboundary value problem was solved and the maximum discretization error was computed.
The test problem was solved in the region a<r< a+1, 0 < z < 1 with boundary values u=0
for r=a,z=0and z=1 and u=sin (nz) for r=a+ 1. For a=1 the discretization error should be
proportional to h* and for a— > oo, the discretization error should be proportional to h°.
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Figure 1. Axisymmetric region R bounded by four axisymmetric shells AB, BC, CD, and DA.

For an irregular region, the main difficulty in applying SOR or SSOR-SI is the determina-
tion of the optimum iteration parameters. The matrix obtained from the difference equations
for an irregular region is not symmetric. The techniques used to determine the optimum
parameters for SOR and SSOR-SI usually assume a symmetric matrix.

Let the region R shown in Figure 1 be the axisymmetric region with boundary the axisym-
metric shells AB, BC, CD and DA. The test problem

u(r, z) = Iy(rr/c)/ Iy (ra/c)— Ko(rr/c)/Ko(ra/c)
* T Iy(mb/c) /Iy (rajc)— Ko(mb/c)/Ko(ma/c)

with b=a+1 and c=1 was solved by finite differences in the region R using a square mesh.
SOR iteration was used with the iteration parameter w=2/[1+ (1 —p?)*]. An approximation
to u, the spectral radius of the Jacobi matrix, was determined by iteration [6, Chapter V). The
maximum discretization error was computed as before. A comparison was made of the solu-
tions obtained using two different approximations for irregular points, i.e., Method 1 uses
Eqgs. (9) for irregular points, and Method 2 uses a nine-point difference equation defined by Eq.
(10), when possible, for irregular points and, if not possible, Egs. (9) are used. Computed results

sin (nz/c)

TABLE 2

Maximum discretization error for an irregular region

h L 1 1

16 32 64
No. of difference
equations 52 204 800
Error with
Method 1. a=10'° 12x107* 42x107° 27x1077
Error with
Method 2. =10 39%x1077 1.3x1077 1.0x 1078
Error with
Method 1. a=1 1.2x107# 49x10°¢ 3.1x1077
Error with
Method 2. a=1 1.6x 1073 8.5x10°8 72x107°
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are given in Table 2. The number of difference equations given in Table 2 is the number in the
region 0 < z<$nR.

5. Calculation of capacitance

Referring to Fig. 1, the capacitance between AB and CD is defined as the charge on AB when
CD is at unit potential and AB, BC and DA are at zero potential. Thus, if u is the solution to the
resulting boundary value problem, then C, the capacitance between AB and CD, is given by

C = —1/(4n) LB (0u)/(on)dS
= —1/(4n) Sr (du)/(am)dS (15)

where I is the contour shown in Figure 1. The derivative in the integrand is the outward normal
derivative.

A uniform mesh is used in the region R. The differential equation is approximated at each
mesh point by a difference equation described in sections 2 and 3. The difference approxima-
tions of u, and u,, given by (7) and (8), are used to approximate the normal derivative in (15).
The integration is done by Simpson’s rule. If the discretization error in the solution of the dif-
ference equation is O (h*), we can expect the discretization error in the computed values of u,
and u, to be at least O (k*). It follows from the results given in [4] that if u(r, z)€ C® in R then,
for an interior point of R, the discretization error in the computed values of u, and u, is O (h*).
Furthermore, a uniform O (h*) discretization error in u, and u, is not expected unless the appro-
ximation to the differential equation at irregular points is O (h%). Because of the narrowness of
the gaps between the electrodes in the region R of Fig. 1, one would expect that the singularities
at the corners of the region would have no significant effect on the solution of the difference
equation in a neighborhood of the surface I'. Based on this assumption, if we integrate the
charge over the surface I' to obtain the capacitance, we would expect that if C, is the computed
value of capacitance obtained, then

C,=C+O0(h").

The capacitance was computed between opposite faces of the capacitor shown in Figure 1,
i.e., between AB and CD, with b=a+ 1 and c=1. An infinite radius a was used. The true value
of capacitance per unit length is known in this case [7] and is equal to In 2/(47?). Table 3 gives
the relative error in the value of capacitance per unit length calculated by finite differences. The
charge was integrated over the path I to obtain the computed value of capacitance. Method 1
and Method 2 are the same two methods used for irregular points in the computed results for
Table 2. :

TABLE 3

Relative error in the computed value of capacitance. Error=(C—C,)/C.

h 5 ¥ &

Error with

Method 1 —23%x1073 —53%x10"3 40x 1076
Error with

Method 2 —36x107%. 29x1078 6.4x 1078
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