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SUMMARY 
This paper describes finite difference techniques used to calculate the capacitance of a ring capacitor. The determination 
of capacitance, involves the solution of a Dirichlet boundary value problem and the calculation of the gradient of the 
solution obtained. Circular cylindrical coordinates are used. Nine point difference approximations are used for the 
Laplacian and the first derivatives of a function. If this function satisfies Laplace's equation and is sufficiently differenti- 
able, the discretization error of each approximation is 0 (h 4) where h is the maximum mesh size. 

1. Introduction 

A nine point  finite difference approximat ion  to the Laplacian  in rectangular  coordinates  in 2 
dimensions is given by [1] 

Lhu = a[u(x+h,  y + k ) + u ( x + h ,  y - k ) + u ( x - h ,  y + k ) + u ( x - h ,  y - k ) ]  
+ b [u(x + h, y) + u ( x -  h, y) ] + c [u(x, y + k ) + u(x, y - k ) ]  -du (x ,  y) (1) 

with 

and 

a = (h 2 + k2)/(12h2k2), 

b = (5k 2 -  h2)/(6h2k2), 

c = (5h 2 -  k2)/(6h2kZ), 

d = 5(h 2 + k2)/(3hZk2). 

If u(x, y) satisfies Laplace's  equat ion and u(x, y)e C 6 in a ne ighborhood  of  the point  (x, y), 
then 

Lh u = Au + 0 [max (h 4, k4)] .  (2) 

If  h = k and if u (x, y) ~ C 8 in a ne ighborhood  of  the point  (x, y), we have L h u = Au + 0 (h6). 
In this paper,  I give a nine point  difference approx imat ion  to the Laplacian in cylindrical 

coordinates  valid for axially symmetric  functions and apply it to the calculat ion of  the capa- 
citance of  ring capacitors described in [2].  The derivatives of  the potential  function are used 
to calculate the capacitance and are also approximated  by nine point  differences. 

2. Difference approximations for regular points 

In  circular cylindrical coordinates  (r, ~b, z), the Laplacian  of  an axially symmetr ic  function u (r, 
z) is given by 

Au = ul(Or)2 + O2ul( z)2 + ( l lr) . (3) 
The derivation of  difference approximat ions  is similar to that  given in [3, p. 337]. It  is given 

in detail in [8].  A rectangular  mesh is used with mesh lengths h and k in the r and z directions, 
respectively. A condit ion which is usually imposed on a difference equat ion such as eqn. (1) 
is that  the coefficients a, b and c be positive, i.e., the matrix is o f "pos i t ive  type".  This restricts 

Journal of Engineerin9 Math., Vol. 9 (1975) 21-28 



22 J. B. Campbell 

the values h and k. In the remainder of this paper I will assume that  k = 0 (h) and hence 0 [max 
(h 4, k4)] = O (h4). 

The operators A~ and Az are defined as 

A,u = h-  2 [(r + hi2) u (r + h, z) + (r - h/2) u (r - h, z) - 2ru (r, z)] ,  
and 

A~u = k -2 [u(r, z + k) +u(r, z - k ) -  2u(r, z)] .  

If u (r, z) e C 6 then, by Taylor series expansion in powers of h and k, it follows that  

A ru + rA z u + [(h ~ + k2)/12] A~ A~ u = rA u + (h2/12) [r (A u)~], 

+ (k2/12) r (Au)zz + (h2/12)(u~/r)~ + 0 (h4). (4) 

Substi tution in (4) of the difference approximation 

(Ur/r)r = h-2 [(r + h/Z)-1 bl (y -t- h, z) ...l-- (r - h/Z)-1 u(r - h, z) 

- 2r (r + h / 2 ) - a ( r -  h/2)-1 u(r, z)] + 0 (h z), 

gives an approximation L h to the operator rAu which is defined by the following equation: 

Lhu = - aou(r, z)+ alu(r + h, z) + az[u(r + h, z + k) + u(r + h, z - k ) ]  

+ a3[u(r, z + k ) + u ( r ,  z - k ) ]  + a 4 [ u ( r - h ,  z + k ) + u ( r - h ,  z - k ) ]  

+ a s u ( r - h ,  z) (5) 
with 

and 

a I = (r + hi2) [(5k 2 -  hZ)/(6h 2 k2)] - 1/[12(r + h/2)],  
a2 = (r + h/2)[(h 2 + k2)/(12h 2k2)3, 

a 3 = r [(5h 2 -  kZ)/(6h2k2)], 

a4 = (r-- h/2)[(h 2 + k 2 ) / ( 1 2 h 2 k 2 ) ]  , 

a5 -- ( r -  h/Z)[(5k 2 - hZ)/(6h2k2)] - 1 / [ 1 2 ( r -  h/Z)] ,  

a o = r [5 (h 2 + k2)/(3h 2 k2)] - r/[6 (r + h i2) (r -  hi2)].  

If u(r, z)e C 6 in a neighborhood of the point (r, z), then 

L h u = rAu + (h2/12) [r(Au)r]r + (kZ/12) r (Au)zz + 0 (h4). 

In a similar manner,  the following approximations for ur and uz are obtained : 

u~ = [h/(lZk2)] [u(r + h, z + k) +u(r  + h, z - k ) - u ( r - h ,  z + k ) - u ( r - h ,  z - k ) ]  

+ { [1/(2h)] - [h/(6k2)]} [u(r+h, z ) - u ( r - h ,  z)] 

+ [(r + h/Z)-I u (r + h, z) + ( r -  h/2)-1 u ( r -  h, z) 

- 2r (r + h/Z)-1 ( r -  h/2)-1 u (r, z)]/6 - (h2/6)(A u), + 0 (h4), 

and 

U z = (r + hi2)[k/(12rh2)] [u(r + h, z + k) - u(r + h, z -  k)] 

+ { [1/(2k)] - [k/(6h2)] } [u (r, z + k) - u (r, z -  k)] 

+ (r-h/Z)[k/(aZrh2)] [ u ( r - h ,  z + k ) - u ( r - h ,  z - k ) ]  

- (kZ/6)(Au)z + 0 (h4). 

(6) 

(7) 

(8) 

3. Difference approximations for irregular points 

For  points close to the boundary  of the bounded region R where we are at tempting to solve the 
differential equation, it may not  be possible to use an approximat ion of the form (5). 

Following [3, p. 338], each derivative of the differential equat ion can be approximated by a 
four point  unbalanced difference, i.e., for 0 < 2 =< 1, 0 < p < 1 and u ~ C 4, 
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I 2 ( 2 - 2 )  u,~=h -2 2 - 1 u ( r + 2 h ,  z) + - - - u ( r + h , z )  
2 ~ 2  2 + 1  

6 u ( r -  2h, z) 3 - 2 u (r, z t 
+ 2 (2+1) (2+2)  - 

u= = k -2 I#-~_21 u(r, z+Zk) + 2 ( 2 -  p)#+~ u(r, z + k) 

6 u (r, z -  #k) - 3 - # u (r, z)] 
+ # (#+  1)(,u+2) - # 3 

+ O(h2), 

+ O(k:), 

u = h _ l [ 2 _ ~ u ( r + h , z  ) 1 u(r-2h,  z) 2 - 1 u ( r , z ) ]  + O ( h  2) (9) 
2(2+ 1) - ~ - -  ' 

A more accurate approximation can sometimes be obtained in the form : 

Lh u =_ --aou(r, z) + a, u(r + dx h, z) + a2u(r + azh, z + dgk) + a3u(r, z + d3k) 

+ a , u ( r - d , h ,  z + d4 k) + a~u(r-d~h, z)+ a ~ u ( r - d &  z - a ~ k )  

+ a~u(r, z - d , k )  + a~u(r + 4 h, z - 4  k) 

= Au + cl (Au), + c2(Au)~+ c3(Au)~,+ c4(Au),~ + c5(Au)= + 0 (h3), 

0 < d ~ < l ,  i = 1 , 2  . . . . .  8.  (10) 

In order that the discretization error in the solution of the difference equation be O (h 4) 
when the difference approximation (5) is used at interior points of R, it is sufficient [3] that 
u (r, z) e C 6 in D, the coefficients a~ of (6) are positive and the approximation L h used at points 
close to the boundary has strict diagonal dominance and satisfies 

LhU/a o = Au/a o + 0 (h4) . 

Let C* denote the set of mesh points on the boundary of R and let Pi denote the mesh point 
corresponding to ai in (10). The requirement of strict diagonal dominance is equivalent to the 
existence of a positive number 6 < 1, independent of h and k, such that 

8 

la, I < 5laol �9 (11) 
i=1 

Pir 

Equating coefficients of derivatives of u of orders up to and including order 4 in (10), we get 
a system of 15 equations in 14 unknowns ao, al . . . . .  as, Cl, c2 .... c s which is overdetermined. 
For  h = k  the coefficients of ur3z and Urz~ are the same. If u~C 5 and u satisfies (3) and if % 
i =  0, 1,..., 8, % i=  1, 2 . . . .  ,5  is a solution of (10) except for the coefficients of u,z3 and with 
ajao > 0 for all i, then 

L h u~ a o = hk (k 2 - h 2 ) (d 4 a 2 - d] a4 + d 4 a6 - d 4 as)u~z3/(6ao) + 0 (h s) 
and 

ILhu/ao[ <= hklk2-h21 lu,=~[/6+O(h 5) = O(h4). 

If h=k,  then LhU/a o = O(hS). 
If we equate coefficients of derivatives of u of orders up to and including order 3 in (10), 

we get a system of 10 equations in 14 unknowns. If we solve the system for ao, al ,  ..., a8, cl 
and c2 with a i=0  for some i and c3=c4--cs =0,  and i fajao >= 0 for all i, then Lhu/a o = 0 (h4). 

The method being used to derive a difference equation for irregular points is: 
(i) Determine values of ao, a, . . . . .  as, ca, c2 . . . . .  c 5 such that coefficients of derivatives of u 

of orders up to and including order 4 in (10) are equal except for the coefficients of u,=~. If 
aJao > 0 for all i and Eq. (11) is satisfied with 6 = 24/25, then these values define a difference 
equation. If ajao < 0 for some i or Eq. (11) is not satisfied, then: 
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(ii) Determine values of ao, ax, ..., as, cl, e2 . . . . .  c 5 such that coefficients of derivatives of u 
of orders up to and including order 3 in (10) are equal, ai = 0 for some i = io and Ca = c4 = c5 = 0. 
The index i o is chosen by checking the signs of the values al/ao of the solution obtained in (i). 
I f j  is the first index for which a~/a o < 0, then set io = j +  1 if a j+ 2/ao < 0 and set io = j  if a j+ 2/ao ~ O. 
If ai/ao > 0 for all i and Eq. (11) is satisfied with 6 = 24/25, then these values define a difference 
equation. Ifa~/ao< 0 for some i or Eq. (11) is not satisfied, then: 

(iii) Use (9) to derive a difference equation. 

4. Solution of the difference equations 

Iterative methods used to solve the difference equations are discussed in [1] and [-5]. When 
reducing the equation L h u = 0 to matrix form it is assumed that the natural ordering of the mesh 
points is used. In matrix form the difference equation LhU = 0 reduces to 

Au=b 

where A is a square non-singular matrix. In a rectangular region with no irregular points the 
equation Lhu=O produces a symmetric matrix A. 
Let 

A = B + D ,  

B = L + U ,  

where 

/ i j = 0  for j>=i, 

ui~ = 0 for j ~  i ,  
and 

dii4:O, di~=O for i ~ j .  

The successive iterates u (") of the successive overrelaxation method (SOR) are defined as 

u~.+ 1) = 5Po~u(,)+(I_coL)-lcoe 
with 

~c~o, -- (I - coL)-I [co U + (1 - co) I3 
and 

c=D-ab  . 

The successive iterates u (") of symmetric successive overrelaxation (SSOR) are given by 

ut, +1) = ~-- ut,) + co ( 2 -  co)(I -  co U ) - '  ( I -  coL)-1 c 
with 

where 
q/~ = ( I -  co U) -1 [coL + (1 - co) I ] .  

If A is symmetric with positive diagonal elements and co is real, the eigenvalues of , ~  are real 
and non-negative. The successive iterates v ~") for the S S OR method with semi-iteration (SS OR- 
SI) are given by [5, p. 471] 

v~,+ 1) = p.+,  (1 -,~/2) -1 [ ( J~ -2 I /2 )v~" '+  k] +(1 - p,+ 1)v ~"-'),  

where 

p l = l ,  pz=2ZZ/(2zZ-1), 

P , + a = [ 1 - P , / ( 4 z 2 ) ]  -1 ,  n = 2 , 3  . . . .  , 

z = ( z / z ) -  1 ,  

the eigenvalues 2 of ~--o~ are contained in the interval 

0 _ <  = 
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and 
k = co ( 2 -  co)( I -  coU)- 1(1-  coL)-1 c .  

If A is a positive definite matrix and if# = S(D- 1 B) then, according to [5, p. 464], if 

0) 1 - - - - -  2/{1 + [2(1 -#)]2t} (12) 

then 
-~1 = S(Yo,,) < {1 - [(1 -#)/2]~}/{1 + [(1 -# ) /2 ] �89  (13) 

As the radial coordinate becomes infinite, the difference approximation (5) approaches the 
difference approximation (1). It has been found that the optimum iteration parameters for 
each of the methods SOR and SSOR do not significantly depend on the radius but only on the 
boundary of the region, e.g., in Figure 1 the optimum iteration parameters are, for practical 
purposes, independent of a. For a square region 0 <  x <  1, 0 <  y <  1, with a square mesh the 
optimal relaxation factor for SOR for the difference equation (1) is given by [-1] 

co = 2 - 2.116 (rch) + 2.24 (rch) z + 0 (h3), (14) 

and for this relaxation factor, the spectral radius of the matrix 5~ is given by 
S (50o,) = 1 - 1.791 (rch) + 1.60 (rch) 2 + O (h3). (15) 

The spectral radius # of the Jacobi matrix D - 1 B  for the same region is given by [1] 

# = 0.2 [cos z (~h) + 4 cos (rch)] . (116) 

This can be used with (12) and (13) to obtain a reasonably efficient estimate for the parameters 
needed for the SSOR-SI method. 

TABLE 1 

Solution of the difference equations in a square region. The number of iterations given is for a~oo. 

No. of SOR iterations 54 92 183 

No. of SSOR-SI iterations 
with O)o, )-o 21 30 43 

No. of SSOR-SI iterations 
with COl, ~l 26 37 52 

Error in test problem. 
a=1016 2.07x 10 -7 3.28x 10 -9 5.13x 10 - l l  

Error in test problem. 
a=�89 1.93 x 10 -6 1.31 x 10 -7 8.39 • 10 -9 

Table 1 gives a comparison of SOR and SSOR-SI for the solution of the Dirichlet problem 
on the unit square with a square mesh (h = k). The optimum relaxation factor co for SOR was 
obtained from (14). The optimum SSOR-SI parameters, coo and '~o, were obtained by numerical 
experiments, co o minimizes S (Y-,o) for the difference equation (1) and ,~o = S ( 3-~,o ). The SS OR-SI 
parameters, o91 and ~l, were obtained from (12), (13) and (16). The table gives the number of 
iterations required to reduce the maximum residual of the difference equation to 10 -14 
when the value of the solution on the boundary of the unit square is zero and the initial approxi- 
mation at each mesh point in the interior of the unit square is unity. Each SSOR-SI iteration 
requires approximately three times as many arithmetic operations as does an SOR iteration. 
A test boundary value problem was solved and the maximum discretization error was computed. 
The test problem was solved in the region a < r < a + 1, 0 < z < 1 with boundary values u = 0 
for r = a, z = 0 and z = 1 and u = sin (zcz) for r = a + 1. For  a = �89 the discretization error should be 
proportional to h 4 and for a -  > oe, the discretization error should be proportional to h 6. 
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Figure 1. Axisymmetric region R bounded by four axisymmetric shells AB, BC, CD, and DA. 

For an irregular region, the main difficulty in applying SOR or SSOR-SI is the determina- 
tion of the optimum iteration parameters. The matrix obtained from the difference equations 
for an irregular region is not symmetric. The techniques used to determine the optimum 
parameters for SOR and SSOR-SI usually assume a symmetric matrix. 

Let the region R shown in Figure 1 be the axisymmetric region with boundary the axisym- 
metric shells AB, BC, CD and DA. The test problem 

u (r, z) = I~ Ozrlc)/I~ (~a /c ) -  Ko (~r/c)/Ko (tea~c) sin (~z/c) 
I o (nb/c)/Io (~za/c)- Ko (nb/c)/Ko (~a/c) 

with b = a +  1 and  c - - 1  was solved by  finite differences in the reg ion  R using a square  mesh.  
S O R  i te ra t ion  was used with  the i t e ra t ion  p a r a m e t e r  co = 2 / [1  + (1 - # 2 ) ~ ] .  A n  a p p r o x i m a t i o n  
to #, the  spectra l  rad ius  of  the Jacob]  matr ix ,  was de t e rmined  by i t e ra t ion  [6, Cha p t e r  V]. The  
m a x i m u m  discre t iza t ion  er ror  was c o m p u t e d  as before.  A c ompa r i son  was m a d e  of  the solu- 
t ions ob t a ined  using two different a p p r o x i m a t i o n s  for i r regular  points ,  i.e., M e t h o d  1 uses 
Eqs. (9) for i r regular  points ,  and  M e t h o d  2 uses a n ine -po in t  difference equa t ion  defined by  Eq. 
(10), when possible,  for i r regular  po in t s  and,  if no t  possible,  Eqs. (9) are  used. C o m p u t e d  results  

TABLE 2 

Maximum discretization error for an irregular region 

h ~ 1_ L 
32 64 

No. of difference 
equations 52 204 800 

Error with 
Method 1. a = 1 0 1 6  1.2x 10 - 4  4.2x 10 - 6  2.7x 10 -7  

Error with 
Method 2. a =  1016 3.9 • 10 - 7  1.3 X 10 - 7  1.0 x 10 -s 

Error with 
Method 1. a=�89 1.2x 10 -4 4.9x 10 -6 3.1 • 10 -7 

Error with 
Method 2. a=�89 1.6 x 10- s 8.5 x 10 .8 7.2 x 10 9 
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are given in Table 2. The number of difference equations given in Table 2 is the number  in the 
region 0 < z < �89 c~ R. 

5. Calculation of capacitance 

Referring to Fig. 1, the capacitance between AB and CD is defined as the charge on AB when 
CD is at unit potential and AB, BC and DA are at zero potential. Thus, ifu is the solution to the 
resulting boundary value problem, then C, the capacitance between AB and CD, is given by 

i (~u)/(~n)dS C = - 1/(4~) AB 

= - 1/(4rC) f r  (Su)/(On)dS (t5) 

where F is the contour shown in Figure 1. The derivative in the integrand is the outward normal  
derivative. 

A uniform mesh is used in the region R. The differential equation is approximated at each 
mesh point by a difference equation described in sections 2 and 3. The difference approxima- 
tions of ur and u~, given by (7) and (8), are used to approximate the normal  derivative in (15). 
The integration is done by Simpson's rule. If  the discretization error in the solution of the dif- 
ference equation is O (h4), we can expect the discretization error in the computed values of ur 
and uz to be at least O (ha). It  follows from the results given in [4] that if u (r, z)~ C 6 in R then, 
for an interior point of R, the discretization error in the computed values of u, and u~ is 0 (h4). 
Furthermore,  a uniform O (h 4) discretization error in u, and uz is not expected unless the appro-  
ximation to the differential equation at irregular points is O (h3). Because of the narrowness of 
the gaps between the electrodes in the region R of Fig. 1, one would expect that the singularities 
at the corners of the region would have no significant effect on the solution of the difference 
equation in a neighborhood of the surface F. Based on this assumption, if we integrate the 
charge over the surface F to obtain the capacitance, we would expect that if Ch is the computed 
value of capacitance obtained, then 

C h-= C+O(h4).  

The capacitance was computed between opposite faces of the capacitor shown in Figure 1, 
i.e., between AB and CD, with b = a + 1 and c = 1. An infinite radius a was used. The true value 
of capacitance per unit length is known in this case [7] and is equal to In 2/(4rc2). Table 3 gives 
the relative error in the value of capacitance per unit length calculated by finite differences. The 
charge was integrated over the path F to obtain the computed value of capacitance. Method 1 
and Method 2 are the same two methods used for irregular points in the computed results for 
Table 2. 

TABLE 3 

Relative error in the computed value of capacitance. Error= (C-Ch)/ C. 

h • fi  A 16 

Error with 
Method 1 -2.3 x 10 -3 -5.3 x 10 -5 4.0 X 10 -6 

Error with 
Method 2 -3.6 x 10 -4 . 2.9 x 10 -6 6.4 x 10-8 
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